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Abstract:  This paper presents an extended Kalman 
filter for real-time estimation of rigid body orientation 
using the newly developed MARG (Magnetic, Angular 
Rate, and Gravity) sensors. Each MARG sensor 
contains a three-axis magnetometer, a three-axis 
angular rate sensor, and a three-axis accelerometer. The 
filter represents rotations using quaternions rather than 
Euler angles, which eliminates the long-standing 
problem of singularities associated with attitude 
estimation. A process model for rigid body angular 
motions and angular rate measurements is defined. The 
process model converts angular rates into quaternion 
rates, which are integrated to obtain quaternions. The 
Gauss-Newton iteration algorithm is utilized to find the 
best quaternion that relates the measured accelerations 
and earth magnetic field in the body coordinate frame 
to calculated values in the earth coordinate frame. The 
best quaternion is used as part of the measurements for 
the Kalman filter. As a result of this approach, the 
measurement equations of the Kalman filter become 
linear, and the computational requirements are 
significantly reduced, making it possible to estimate 
orientation in real time. Extensive testing of the filter 
with synthetic data and actual sensor data proved it to 
be satisfactory. Test cases included the presence of 
large initial errors as well as high noise levels. In all 
cases the filter was able to converge and accurately 
track rotational motions. 

 
1.  Introduction 

Accurate real-time tracking of orientation or 
attitude of rigid bodies has wide applications in 
robotics, aerospace, underwater vehicles, automotive 
industry, virtual reality, and others.  A number of 
motion tracking technologies have been developed for 
virtual reality applications, including mechanical 
trackers, active magnetic trackers, optical tracking 
systems, acoustic tracking systems, and inertial tracking 
systems. 

Mechanical trackers can be placed in two separate 
categories. Body-based systems utilize an exoskeleton 
that is attached to the articulated structure to be tracked. 
Goniometers within the skeletal linkages measure joint 
angles. Ground-based systems attach one end of a 
boom or shaft to an object to be tracked and typically 
have six degrees of freedom [1]. 

Active magnetic tracking systems determine both 
position and orientation by using small sensors 
mounted on a rigid body to sense a set of generated 
magnetic fields. The sensors contain three mutually 
perpendicular coils. Changes in strength across the coils 
are proportional to the distance of each coil from the 
field emitter assembly. Three sequentially emitted 
fields create one induced current in each of the three 
sensor coils, allowing measurement of orientation [2]. 

Practical optical tracking systems may be 
separated into two basic categories. Pattern recognition 
systems sense an artificial pattern of lights and use this 
information to determine position and/or orientation. 
[3] Image-based systems determine position by using 
multiple cameras to track predesignated points on 
moving objects within a working volume. The tracked 
points may be marked actively or passively [4]. 

Ultrasonic tracking systems can determine 
position through either time-of-flight and triangulation 
or phase-coherence. Phase-coherence trackers 
determine distance by measuring the difference in 
phase of a reference signal and an emitted signal 
detected by sensors.  

Fuchs (Foxlin) presented an inertial system for 
head tracking applications [5]. This system utilized a 
fluid pendulum and three solid-state piezoelectric 
angular rate sensors. More recent publications describe 
the use of three orthogonal solid-state rate gyros, a two-
axis fluid inclinometer and a two-axis fluxgate compass 
[6]. Sensor data is processed by a complementary 
separate-bias Kalman filter. 
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Hayward et al. [7] presents an attitude tracking 
system with GPS and inertial sensors used for aircraft. 
The difference among the GPS signals received by 
three antennas gives attitude information. Quine [8] 
replaces the antenna information with information 
coming from celestial observations. Leader [9] 
describes an attitude package, which combines the 
outputs of inclinometers, gyros, and compasses to 
obtain attitude estimation. All three examples utilize 
Euler angles to represent orientation and a Kalman 
filtering algorithm to integrate the information. 

Bachmann et al. [10] presented a motion tracking 
system that is based the MARG  (Magnetic, Angular 
Rate, and Gravity) sensors.  MARG sensors are hybrid 
inertial and magnetic sensors.  Each MARG sensor 
contains a three-axis magnetometer, a three-axis 
angular rate sensor, and a three-axis accelerometer 
mounted in a “strapdown” configuration. Quaternions 
are used to represent orientations. The use of 
quaternions avoids the singularity problem, 
characteristic of filters that use Euler angles.  A 
constant-gain complementary filter was developed to 
estimate the attitude of a rigid body that a MARG 
sensor is attached to. 

This paper follows the same approach of [10], but 
replaces the complementary filter with a Kalman filter. 
The use of quaternions is maintained because of 
characteristics that make them very suitable for this 
approach. They can easily be transformed into a matrix 
and can be integrated easily due to their dependence on 
the angular rates. An innovative Kalman filter design is 
described, which reduces the order of the output vector 
as well as the computational effort needed to run the 
filter.  Testing results using synthetical data and actual 
sensor data are presented. 

 

2. Quaternions 
Orientation can be defined as a set of parameters 

that relates the angular position of a frame to another 
reference frame. There are numerous methods for 
describing this relation. Some are easier to visualize 
than others are. Each has some kind of limitations. 
Among them, rotation matrices, Euler angles and 
quaternions are commonly used. Orientation or attitude 
tracking systems continuously estimate the angular 
parameters of a body based on certain measurement 

data.  Quaternions are a four-dimensional extension to 
complex numbers. A quaternion can be regarded as an 
element of 4ℜ . In this paper, quaternions will be 
represented using the notation from [11]: 

0nndkcjbian +=+++= r
  (1) 

where a, b, c, and d are real numbers and i, j, and k are 
unit vectors directed along the x, y, and z axis 
respectively.  A quaternion is a unit quaternion if 
        θcos0 =n    and θsin=nr   (2)  
for some angle θ.  Unit quaternions can be used to 
rotate a vector ur . The rotation is performed through 
the double quaternion multiplication [12] 

*nunv rr =     (3) 
where *n is the complex conjugate of the quaternion n  
defined as 

dkcjbian +−−−=*    (4) 
This operation rotates the vector ur  through an 

angle θ2  about the axis defined by nr .  The operation 
using Equation (3) is equivalent to a matrix 
multiplication 

  uRnunv rrr == *     (5)  
where, providing n is a unit quaternion,  

        (6) 
 
3.  Process Model 

To design a Kalman filter for estimating 
orientation, the first step is to develop a process model 
of a rigid body under rotational motion [13].  Let the 
angular rate ω of the rigid body be defined as: 

p:  body angular velocity around the x axis (roll), 
q:  body angular velocity around the y axis (pitch), 
r:  body angular velocity around the z axis (yaw). 

The state vector of a process model will consists of the 
angular rate ω and parameters for characterizing 
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Figure 1.  Process Model for Angular Rates. 
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proposed.  This approach uses the Gauss-Newton 
iteration algorithm to find the best matched quaternion 
for each measurement from the accelerometers and 
magnetometers.  The computed quaternion from the 
Gauss-Newton iteration algorithm is taken as part of 
measurements for the Kalman filter, in addition to the 
measurements provided by the angular rate sensor.  As 
a result, the outputs of the Kalman filter are reduced 
from nine to seven.  More importantly, the output 
equations become linear, which greatly simplifies the 
design of the filter.  The feasibility of this approach 
heavily relies on fast convergence of the Gauss-Newton 
iteration algorithm.  Extensive simulations show that 
the iteration algorithm converges in just 3 to 4 steps, 
which ensures the success of this alternative approach. 

 
4.1  The First Approach 

As was discussed earlier, the states of the process 
model are: 

:1x  angular rate p 
:2x  angular rate q 
:3x  angular rate r 
:4x  quaternion component a 
:5x  quaternion component b 
:6x  quaternion component c 
:7x  quaternion component d (scalar  

component) 
Based on the model from Figure 2, the state 

equations can be written as 
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It is noted that the product terms in the parentheses 

are introduced by quaternion product between the 
angular rate and the quaternion, and the square-root 
terms appeared in the denominator are due to the 
quaternion normalization. 

Since measurement data to the filter are provided 
by the MARG sensor, it is natural to choose the 
following as the outputs of the Kalman filter:   

:1z  angular rate p 
:2z  angular rate q 
:3z  angular rate r 
:4z  component of gravity on the x-axis of the 

body frame 
:5z  component of gravity on the y-axis of the 

body frame 
:6z  component of gravity on the z-axis of the 

body frame 
:7z  component of the local magnetic field on the 

x-axis of the body frame 
:8z  component of the local magnetic field on the 

y-axis of the body frame 
:9z  component of the local magnetic field on the 

z-axis of the body frame 
Since angular rates are part of the state, the first 

three output equations are linear and fairly simple: 
11 xz =  (16) 

22 xz =  (17) 

33 xz =  (18) 
As for the remaining six output equations, they 

turn out to be quite complicated.  As an example, the 
fourth output equation is given by: 
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where 1h , 2h , and 3h are values of the earth magnetic 
field measured in earth coordinates, which are constant 
for a given location.  It is not difficult to design an 
extended Kalman filter based on the state equations (9) 
to (15), and the nine output equations, which we did.  
The problem is that computational requirements for 
implementing such a filter is extremely high, making it 
unfeasible for real-time motion tracking since a 
minimum of fifteen MARG sensors are needed to fully 
track one avatar, not to mention simultaneous tracking 
of multiple avatars in a virtual environment.  An 
alternative approach to the Kalman filter design is thus 
presented in the next two subsections. 
    
 
4.2. Algorithms For Quaternion Convergence 

We first describe two convergence algorithms.  
Consider a rigid body on which a tri-orthogonal 
coordinate frame is attached to its center of gravity. If 
three accelerometers and three magnetometers are fixed 
to the origin of the frame, they measure components of 
the gravity and of the earth magnetic field in the axis of 
the frame as the body rotates.  Because these values are 
known and constant for a given geographic area, one 
can expect that there exists a quaternion relating the 
measurements (values in body frame) to the real 
magnetic and gravity fields (values in earth frame). 

Obviously there are several sources of errors, 
including: 

− misalignments between pairs of axes in each 
sensor; 

− linear acceleration misinterpreted as gravity; 
− variation of both gravity and magnetic field; and 
− errors inherent to the sensors. 
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Figure 3.  Diagram of the Kalman filter Using the 
Second Approach. 
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As a result, there is not a quaternion that exactly 
converts what is measured (body frame) into the known 
values (earth frame). The solution is to determine the 
best quaternion such that, after the conversion, the error 
is minimized. This paper examines this problem using 
the minimum-squared-error (MSE) criterion.  It is noted 
that error can be minimized in either the body frame or 
in the earth frame.  Error is minimized in the earth 
frame in this derivation. Two different algorithms are 
evaluated. 

Let Q  be the error function defined as 

)()( 0101 yMyyMyQ BETBETE −−== εε  (20) 
where 

1yE : is a 6x1 vector with values of gravity and 
magnetic field in the earth frame, 

0yB : is a 6x1 vector with the measurements of 
gravity and magnetic field in the body frame, 

and 
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 The matrix R in Eqation (21) is defined by Equation 
(6). 

Because 0y  is measured and 1y  is known, the 
error between them is a function of the matrix M , 
which in turn  depends on the four components of the 
quaternion. The objective is to find iteratively the 
values of quaternion components that yield the 
minimum error. 

Several optimization algorithms exist in the 
literature. Among them the Newton and Gauss-Newton  
algorithms are the most used ones. The main difference 
between them is that the former uses the first and 
second derivatives of the error function (gradient and 
Hessian) and the latter uses 
only the first derivative 
(Jacobian), which is related 
to the gradient.  

The formulation for 
the iterative algorithm can 
be found in [14]. For the 
Gauss-Newton method it is 
given as: 
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1 k

E
k

T
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T
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+ −=    (22) 
where n̂  is a vector with the four components of the 
quaternion and J is the Jacobian matrix defined as 

                      (23) 
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Figure 4. Quaternion Convergence of the
Newton Method. 
For the Newton method, the algorithm is given as: 
( )[ ] ( )[ ]k

E
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1 ∇∇− −  (24) 
 QE

n∇  is the gradient of the error function Q 
lated in the earth coordinates with respect to each 
e four quaternion components. The gradient is 
lated using the formula [15]: 
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n the same way, the Hessian is the second order 
ative of the error function Q calculated in the earth 
inates with respect to the quaternion components. 
alculated by the formula [15]: 

     

     (26) 
he success of the alternative Kalman filter design 
endent completely on convergence of the Gauss 
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ot only converge, but also converge in 3 or 4 steps 
 most cases.  Convergence results will be 

resented in Section 5. 
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4.3. The Second Approach 
With the introduction of the convergence 

algorithm as an external loop to the Kalman filter, the 
quaternion components are now available as 
measurements. Figure 3 shows the schematic and data 
flow of the second approach. 

The state equations are the same as before, that is, 
Equations (9)-(15).  However, the output equations are 
different and much simpler.  Now the outputs are:  

:1z  angular rate p 
:2z  angular rate q 
:3z  angular rate r 
:4z  quaternion component a 
:5z  quaternion component b 
:6z  quaternion component c 
:7z  quaternion component d 

As can be seen, the outputs are exactly the same as 
the states.  Therefore, the output equations are simply 
identity functions, that is, 

ii xz =   7,...,1=i  
Although the output equations are linear, an extended 
Kalman filter is required since part of the state 
equations is nonlinear.  Nevertheless, linearity in the 
output equations significantly simplifies the filter 
design and reduces the computational requirements for 
real-time implementation. 
 
5.  Testing and Simulation Results 

In this section, testing and simulation results of the 
quaternion convergence algorithms and the second 
approach of the Kalman filter are described. 

 

5.1 Testing of the Convergence Algorithms 
The objective of the test is to check the 

convergence for different rotations, initial estimates, 
and noise levels. A six-element vector is chosen, which 
contains the components of gravity and local magnetic 
field vectors. An arbitrary quaternion is selected and 
used to rotate the initial vector. Gaussian noise is added 
to the rotated vector in order to simulate the 
measurement noise. The initial guesses are chosen to be 
values around the real value of the quaternion.  

Figures 4 and 5 show the result of  the Newton and 
Gauss-Newton algorithms, respectively.  In this case, 
no noise was added.  Both algorithms converge in three 
or four iteration steps.  Testing was also conducted with 
added noise. The algorithms now converge to the best 
value of quaternion and the error is not zero any more. 
Figure 6 shows the convergence using the Gauss-
Newton algorithm with added noise.  Extensive 
simulation was carried out, and similar results were 
observed in all cases [15]. 

The above reported convergence results apply to 
the cases of large errors in initial estimates. Additional 
experiments, reported in [16], show that during 
tracking, when errors are much smaller, Guass-Newton 
iteration typically converges to sufficient accuracy in 
only one step. 

 
5.2 Testing of the Complete Kalman Filter 
 The Kalman filter designed using the second 
approach was tested with ideal (synthetic) data and 
actual data collected from a prototype MARG sensor.   

The purpose of the test with ideal data is to verify 
that the filter converges to the correct steady-state 
values after a single rotation. The ideal data were 
generated as follow.  Both frames are coincident at the 
beginning and then the body frame was rotated 120 
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degrees about the axis [ ]111=mr .  The initial 
values utilized for the states and the expected steady-
state values are listed below: 

 
 p q r a b c d 

Initial 
Values 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Steady 
State 0 0 0 0.5 0.5 0.5 0.5 

 
 The filter results are depicted in Figures 7 and 8.  
It is seen that both the angular rates and quaternion 
components converge to the steady state in less than a 
half of seconds.  
 The Kalman filter was tested with actual 
measurement data collected from a MARG sensor as 
well.  During the period when data were collected, the 
MARG sensor was first rotated 90 degrees about the x 
axis, followed by a 90 degree rotation about the y axis, 
and finally rotated 90 degrees about the z axis.  Angular 
rates should be zero except the three brief moments 
when the sensor was rotated.  The tracking results 
produced by the Kalman filter are presented in Figure 9 
and 10.  Figure 9 shows the filter tracking result of 
angular rates.  It is seen that each component of angular 
rates is mostly zero except the brief moment when the 
sensor was rotated about that axis, as expected.  Minor 
coupling between axes was noticeable.  This is because 
the MARG sensor was rotated by hand against a 
tabletop.  It is difficult to keep other two axes 
absolutely fixed while rotating about one axis.   Figure 
10 shows the tracking results of quaternion 
components.  The expected values are marked right 

above or below each trajectory segment.  It is seen that 
the filter is able to successfully track orientations. 
 It should be pointed out that testing results 
presented here are qualitative in nature.  More precise 
and quantitative testing will be conducted using a high-
precision turntable in the near future. 

7. Conclusions 

This paper presented a complete design of an 
extended Kalman filter for real-time estimation of rigid 
body motion attitude. The use of quaternions to 
represent rotations, instead of Euler angles, eliminates 
the long-standing problem of singularities called 
“gimbal lock.” 

Two approaches to the Kalman filter design were 
investigated. The first approach used nine output 
equations: three angular rates, three components of 
linear acceleration, and three components of the earth 
magnetic field. Since these output equations were 
highly nonlinear functions of the process state 
variables, the partial derivatives needed for the Kalman 
filter design were very complicated. As a result, a filter 
formulated with these equations would not be useful for 
real-time applications. 

The second approach utilized Gauss-Newton 
iteration algorithm to find the optimal quaternion that 
related the measurements of linear accelerations and 
earth magnetic field in the body coordinate frame to the 
values in the earth coordinate frame. The optimal 
quaternion was used as part of the measurement for the 
Kalman filter, which had seven outputs: three angular 
rates and four components of a quaternion. As a result, 
the output equations were linear. The partial derivatives 
were total derivatives and had constant values. The 
convergence algorithm replaced the computation of the 
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Figure 7.  Convergence of Angular Rates Using Ideal 
Data. 
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partial derivatives of the nine nonlinear measurement 
equations. The computational requirements for the 
Kalman filter developed using this approach were 
significantly reduced, making it possible to estimate 
attitude in real time. 

Extensive tests were conducted to verify the 
convergence of Gauss-Newton and Newton algorithms, 
and the performance of the Kalman filter. In almost all 
cases and for both Gauss-Newton and Newton 
algorithms, the convergence occurred in three or four 

iterations. The filter implementation used the Gauss-
Newton algorithm because it does not involve second 
order derivatives. 

The filter achieved excellent results for all tests 
using ideal synthetic data and actual sensor data. The 
convergence to the steady-state values took only three 
or four iteration steps. The filter is able to track 
rotational motion of the body on which the MARG 
sensor is attached.  No singularities were observed, 
even when two consecutive 90-degree rotations were 
applied.  Currently, fifteen MARG sensors are 
integrated to build a body suit that will be able to track 
posture of a person in virtual reality applications. 

Although the authors’s interest in quaternion based 
filter has thus far been restricted to human body motion 

tracking, the approaches described above are also 
applicable to any highly maneuverable vehicle or robot.  
In particular, a similar problem without rate sensors has 
been investigated for application to manned or 
unmanned aircraft orientation estimation [17]. 
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